

Book Preview

This is a sample chapter of “Professional PHP - Building maintainable and

secure applications”. The book starts with a few theory chapters and after that

it is structured as a tutorial. The more advanced programming concepts are

covered as part of the tutorial.

I picked a random chapter from the tutorial to give you a sneak peak into the

book. Without the preceding chapters, it lacks a bit of the surrounding

context, but I hope that the sample chapter will give you a rough idea about

what to expect from the book.

5. Application Layer

Introduction

The name application layer comes from the domain driven design community

and it describes the layer that separates your controllers from your business

logic. Other common names for this layer include service layer and use case

layer.

The application layer represents the possible interactions between the outside

world and your application - the queries and commands that can be executed

by the frontend. This is why it is sometimes called the use case layer.

1

The application layer methods and classes can be reused in multiple

controllers. You can use the same application layer class from a HTTP

controller, a CLI controller and for your JSON API. The layer also has the

benefit of making behaviour testing very easy and convenient.

It is common for new developers to have all their logic in their controllers,

they grow and grow until the controllers are several thousand lines long. The

controller methods end up doing everything from displaying HTML to calling

the database and sending emails. This is not object oriented programming, it’s

just procedural code in a class.

The presentation layer controllers are the glue that connects your application

to the outside world. They only receive a request and then return a response.

They can contain presentation logic, but business or application logic doesn’t

belong into the controllers.

To separate the responsibilities, our front page controller needs a new

dependency that can return a list of submissions. Our controller will receive a

request, fetch the submissions from this dependency and then return the

content as a HTML page.

Single Responsibility Principle

The single responsibility principle (SRP), states that a class should only have

one responsibility. You can think of the principle as separation of concerns for

classes. But sometimes it can be unclear what exactly a single responsibility

is, so Robert C. Martin came up with the following description for the

principle.

A class should have only one reason to change.

Robert C. Martin

2

The single responsibility principle also relates to the basic programming

principles of low coupling and high cohesion. You want to put all the things

that change for the same reason into the same class (high cohesion) and all

the things that change for a different reason into separate classes (low

coupling).

Some developers are scared of breaking up their code into too many classes.

They are worried that a lot of classes will make the system harder to

understand. Enterprise Java code is often used as an example of OOP that has

been taken too far.

Putting all your code into one single class is clearly not the way to go, that

would not be object oriented at all. On the other hand, a million separate

classes for a relatively small application sounds just as bad. We have to draw

the line somewhere and find a good compromise between the two extremes.

The code will contain the same amount of moving parts, whether it’s in one

large class or in many small ones. You need to organize your code in a way

that makes it easy to understand those moving parts. It will be much easier to

navigate through a lot of small and well-named classes, compared to a few

large ones with thousands of lines each.

If every class has only a single responsibility, it will be much easier to find a

fitting name for that class. And a good class name makes it easier to find a

specific piece of code during debugging or development.

Finding a good name

The classes in the application layer are often called services, which is why

some developers call it the service layer. But don’t take this too literal and just

suffix all your application layer classes with Service.

3

A Service suffix makes it faster to write code, because you don’t have to think

about choosing a good class name. But when you come back to the code a few

months later and you notice a SubmissionService, then you probably won’t

remember what the class does. A good name describes what an object is and a

name like SubmissionService does not communicate much useful information.

Now you might be wondering if the same doesn’t apply to controllers too,

after all they share a Controller suffix. The difference is that the Controller

suffix adds meaning. If one of your coworker spots a class with a controller

suffix, then he immediately knows more about the class. On the other hand,

the Service suffix doesn’t add meaning. Service is an overused word in the

developer world and it just ends up being a noise word.

We need a good name for our class and it has to be more meaningful than

SubmissionService. A better pick for the name would be SubmissionReader,

with a method that returns an array. That is more specific than a service

suffix, but there is still room for improvement.

If we take a step back, we can see that we are usually doing one of two things

in the application layer. Either we want to request some information or we

want to change the state of the application. It’s not that different from what

HTTP does, it has GET on one side and POST, PUT, PATCH, DELETE on the

other side.

The clear distinction between read and write operations was originally

formalized by Bertrand Meyer, as the Command-query separation (CQS)

principle. But CQS usually refers to methods and not classes.

Asking a question should not change the answer.

Bertrand Meyer

4

Some developers noticed that the same approach also had benefits when it

was applied to other things. Originally it was also called CQS when the

principle was used to separate classes and components, but that kept

confusing developers. As a response to that confusion, Greg Young came up

with the term Command-query responsibility segregation (CQRS) to

distinguish the two.

If you read up on the internet on what CQRS is, you might get the impression

that it’s very complicated. But it’s just about separating your read from your

write side.

You probably already know where I am going with this. Instead of a generic

reader class with many different read operations, we can model the queries as

objects instead.

Interface segregation

The interface segregation principle (ISP) stand for the I in SOLID. It states

that no client should be forced to depend on methods that it does not use.

This is the principle that I see violated most often from developers who

otherwise try to follow the SOLID principles. These violations are either

services or repositories that do a lot of different things. The ISP violations in

repositories usually happen because there is a one to one relationship

between entity and repository, but multiple classes need to modify and read

the state of that entity.

We are going to look at entities and repositories in a later chapter when the

domain layer is introduced. For now, we only need to read a list of

submissions. The interface for a SubmissionReader could end up looking like

the following example.

5

This code is not part of the tutorial

public function getSubmissions(): array;

public function getSubmissionsFromUser(UserId $userId): array;

public function getSubmission(SubmissionId $submissionId): Submission;

If you take the interface segregation principle into consideration, the problem

should be obvious. Our front page controller only needs access to

getSubmissions().

On the other hand, we could have a controller to view a single submission and

another one to view a user profile. Each one of those controllers only needs

access to one of the methods, but if they depend on the SubmissionReader,

then they are forced to depend on all of them. This complicates unit testing

and makes it harder to refactor your code down the road.

We could try to split the reader into multiple classes, but that makes it hard to

come up with good names. One class would end up as

SubmissionsFromUserReader with a getSubmissionsFromUser() method for

example. That approach goes into the right direction, but let’s see how the

same would look if we model it as a query instead.

This code is not part of the tutorial

interface SubmissionsFromUserQuery

{

 public function toIterable(UserId $userId): array;

}

The focus is now on the object and not the method. It is easy to follow the ISP

when you use query objects - you have a separate interface for each query.

6

But as with everything, there is a tradeoff. It requires more effort to

deduplicate code between query objects and sometimes you might have to

depend on multiple objects, when before a single reader would have been

sufficent. I believe that those are fair tradeoffs, because you get a cleaner

interface for your application layer in return.

The query object

Before we create a query object, we need a simple value object to represent a

submission. Create an Application directory in your FrontPage directory and

then create a new Submission.php file. This value object will represent a single

submission on the front page and it consists of an URL and a title text.

src/FrontPage/Application/Submission.php

<?php declare(strict_types=1);

namespace SocialNews\FrontPage\Application;

final class Submission

{

 private $url;

 private $title;

 public function __construct(string $url, string $title)

 {

 $this->url = $url;

 $this->title = $title;

 }

 public function getUrl(): string

 {

 return $this->url;

 }

 public function getTitle(): string

 {

 return $this->title;

 }

}

7

We need to return more than one submission, so we need an iterable

collection of submissions. We could create a separate object for this, but in

most cases a simple array works just as well. You just have to add a docblock

to add additional type information.

In the same directory, create an interface for the query. I recommend a Query

suffix for the queries, because otherwise you can get a naming conflict with

one of your collection value objects.

src/FrontPage/Application/SubmissionsQuery.php

<?php declare(strict_types=1);

namespace SocialNews\FrontPage\Application;

interface SubmissionsQuery

{

 /** @return Submission[] */

 public function execute(): array;

}

Why do we use an interface instead of a concrete class?

I like to separate the layers as good as possible. The application layer only

concerns itself with the use cases of the application and the infrastructure

layer is the only one that knows about the database.

Sometimes you might want to reuse infrastructure code between multiple

queries and those shared classes would only distract from the essential things

in the application layer.

Now we need to make the query a dependency of the controller and use it

instead of the hardcoded list of submissions from the last chapter.

8

src/FrontPage/Presentation/FrontPageController.php

<?php declare(strict_types=1);

namespace SocialNews\FrontPage\Presentation;

use SocialNews\Framework\Rendering\TemplateRenderer;

use SocialNews\FrontPage\Application\SubmissionsQuery;

use Symfony\Component\HttpFoundation\Response;

final class FrontPageController

{

 private $templateRenderer;

 private $submissionsQuery;

 public function __construct(

 TemplateRenderer $templateRenderer,

 SubmissionsQuery $submissionsQuery

) {

 $this->templateRenderer = $templateRenderer;

 $this->submissionsQuery = $submissionsQuery;

 }

 public function show(): Response

 {

 $content = $this->templateRenderer->render('FrontPage.html.twig', [

 'submissions' => $this->submissionsQuery->execute(),

]);

 return new Response($content);

 }

}

We have the interface, but there is still no implementation. Later during the

project we will fetch the submissions from a database, but for now we just

need a hardcoded list to continue with the development.

An object that simulates the behaviour of a real object is called a mock object.

Usually we use those for unit tests to test a class in isolation. We are not doing

any unit testing in this tutorial, but we still need to manually test whether our

application code works.

9

In your front page directory, create an Infrastructure directory and then

create a MockSubmissionsQuery.php file in that directory. You could also add

subdirectories for the layers in there, but because the component is very

small, there is no need for that. Just something to keep in mind if your

infrastructure directory grows out of control.

src/FrontPage/Infrastructure/MockSubmissionsQuery.php

<?php declare(strict_types=1);

namespace SocialNews\FrontPage\Infrastructure;

use SocialNews\FrontPage\Application\Submission;

use SocialNews\FrontPage\Application\SubmissionsQuery;

final class MockSubmissionsQuery implements SubmissionsQuery

{

 private $submissions;

 public function __construct()

 {

 $this->submissions = [

 new Submission('https://duckduckgo.com', 'DuckDuckGo'),

 new Submission('https://google.com', 'Google'),

 new Submission('https://bing.com', 'Bing'),

];

 }

 public function execute(): array

 {

 return $this->submissions;

 }

}

The Auryn dependency injector container is smart and it wires everything

together by itself if it can figure out what concrete class you want to have

injected. But because we are using an interface for SubmissionsQuery, we need

to help the injector out.

To specify which implementation is going to be injected when we use the

interface for the type declaration, add the following lines to your

dependencies file.

10

src/Dependencies.php

// ...

use SocialNews\FrontPage\Application\SubmissionsQuery;

use SocialNews\FrontPage\Infrastructure\MockSubmissionsQuery;

// ...

$injector->alias(SubmissionsQuery::class, MockSubmissionsQuery::class);

$injector->share(SubmissionsQuery::class);

// ...

Now the MockSubmissionsQuery implementation has become the default. You

can still override this on a per class basis if you come across a case where you

need a different implementation.

What is happening here? The alias() method marks MockSubmissionsQuery as

the default implementation for the SubmissionsQuery interface. Auryn can

now automatically inject it whenever you depend on that interface. Of course

you can always override the alias for a specific class if you want another

implementation injected.

The share() method prevents Auryn from creating a new instance whenever

an object is injected. The same instance of the object is reused for all classes

that use this dependency.

Refresh your front page and make sure that the code works before you

continue with the next chapter.

11

If you want to read more

I hope that you enjoyed this sample chapter. The full book is available on my

website at http://patricklouys.com/professional-php.

Cheers,

Patrick

12

http://patricklouys.com/professional-php/

	Book Preview
	5. Application Layer
	Introduction
	Single Responsibility Principle
	Finding a good name
	Interface segregation
	The query object

	If you want to read more

